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HERE IS MUCH signal processing devoted to detection 
and estimation. Detection is the task of detetmitdng if 
a specific signal set is pteaettt in an obs&tion, whflc 

estimation is the task of obtaining the va.iues of the parameters 
derriblng the signal. Often the s@tal is complicated or is 
corrupted by interfeting signals or noise To facilitate the 
detection and estimation of signal sets. the obsenation is 
decomposed by a basis set which spans the signal space [ 1) 
For many problems of engineering interest, the class of aigttlls 
being sought are periodic which leads quite natuallv to a 
decomposition by a basis consistittg of simple petiodic fun=- 
tions, the sines and cosines. The classic Fourier tran.,fot,,, h 
the mechanism by which we M able to perform this decom- 
posttmn. 

BY necessity, every observed signal we pm- must be of 
finite extent. The extent may be adjustable and Axtable. 
but it must be fire. Proces%ng a fiite-duration observation 
~POSCS mteresting and interacting considentior,s on the ha- 
momc analysic rhese consldentions include detectability 
of tones in the Presence of nearby strong tones, rcoohability 
of similarstrength nearby tones, tesolvability of Gxifting tona, 
and biases in estimating the parameten of my of the alon- 
menhoned signals. 

For practicality, the data we p- are N unifomdy spaced 
samples of the obsetvcd signal. For convenience. N is highJy 
composite, and we will zwtme N is evett. The harmottic 
estm~afes we obtain UtmugJt the discrae Fowie~ tmnsfotm 
(DFT) arc N mifcwmly spaced samples of the asaciated 
periodic spectra. This approach in elegant and attnctive 
when the proce~ scheme is cast as a spectral decomposition 
in an N-dimensional orthogonal vector space 121. Unfottu- 
nately, in mmY practical situations, to obtain meaningful 
results this elegance must be compmmised. One such 

t=O,l;..,N- l.N.N+l. 

(1) 

We cherve that by defining a buds set ovet an ordered index 
t, we am defining the rpcctmm over a line (called the fre- 
quen=Y Uu) from Which we dnW the concepts of bandindth 
md of frwuencia close to and fat from a given frequency 
(rhich is related to l-e%htion). 

For nmpled s@als. the basix set spatming the interval of NT 
scxxmdr h identid with the scqucnces obtained by uniform 
satnpka of the wmsponding wntinuous spanning Set up IO 
the index N/2. 

k=O,,.-.-.N/2 

n=O.,;--.N- / 

(2) 

We note hen that the trigonometric functions are unique in 
that uniformly spxed samples (ovet an integer number of 
periods) fotm ortlt~ottal sequences. Arbitrary onhogond 
functions, zimiluly sampied, do not form orthogonal se- 
quences. We also note that aa interval of length NT seconds 
1s not the same as the inteml coveted by N samples separated 
by intervals of T seconds. This is easily understood when we 
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reali.ze that the interval oveq which the samples are t*cn is 
closed on the left and is open on the right (i.e., I-)). Fig. 1 
demonstntes this by sampling a function which k even about 
its midpoint and of duration h’T sccondr. 

Since the DFT essentiaUy considers squences to be periodic, 
we can consider the mirnng end point to be the beming of 
the next period of the periodic extension of this sequence. In 
fact, under the periodic extensiott, the next sample (at 16 sin 
Fii. 1.) is indM&gGhable from the sample at zero seconds. 

This apparent lack of symmetry due to the missing (but 
implied) end point is P +ource of umfusion in sampled window 
de&n. Thk can be traced to the early work related to con- 
vergence factors for the partial sums of the Fourier series. The 
partial sums (or the Gnite Fourier transform) always include 
an odd number of paints and exhibit even symmetry about 
the origin. Hence much of the litekrc and many software 
libr.uia incnrponte windows de-signed with true even sym- 
metry rather than the implied symmetry with the missing end 
point! 

We must remember for DFT prwe&ng of sampled data that 
even aymmctry means that the projection upon the sampled 
sine sequences is identically zero; it doa not mean a matching 
left and right data point about the midpoint. To distinguish 
thi3 symmetry from cawentiond ~emten we wiU refer to it 
as DFT-even (i.e., a cmwentio~I even sequence with the right- 
end point removed). Another example of DFT-even sym- 
metry is presented in Fii. 2 aa samples of a periodicaIly 
extended triangle wave. 

If WC evaluate a DFT-even sequence via a finite Fourier 
transform (by treating the +N/Z point as a zero-value point), 
the resultant continuous periodic function exhibits a non zero 
imaginary component. The DFT of the same wquenre is a set 
of samples of the tiite Fourier transform, yet thex samples 
exhibit an imaginary component equal to ICTO. Why the dis- 
parity? We mlut remember that the mixing end point under 
the DFT symmetry contributes an imaginary smusoidal 
component of period Zn/(N/Z) to the finite transform 
(corresponding to the odd component at sequence position 
N/2). The sampling positions of the DFT are at the multiples 
of 277/N. which, of course. correspond to the zeros of the 
im&m,’ sinuoidal component. An example of this for- 
tu~tou sampling is show in Fig. 3. Notice the sequencei( 

scq”cnee. 

is decomposed into its even and odd parts. with the odd part 
supplying the imaginary sine component in the ftite 
transform. 

III. SPECTRAL LEAKAGE 
The selection of a ftite-time interval of NT seconds and of 

the orthogonal trigonometric basis (continuous or sampled) 
over this interval leads to an interesting pectiti’y of the 
spectral expansion. From the continuum of possible fre- 
quencies. only those which coincide with the basis will protect 
onto a single basis vector; all other frequencies will exhibtt 
non zero projections on the entire basis set. This 1s often 
referred to as spectral leakage and is the result of processing 
ftite-duration records. Although the amount of leakage 1s 
influenced by the sampling period, leakage Is not caused by 
the sampling. 

An intuitive approach to leakage is the undentandmg that 
simals with frequencies other than those of the basis set are 
not periodic in the observation window. The petiodic exfen- 
sion of a signal not commensurate with its natural period 
exhibits discontiwities at the boundaCes of the observatmn. 
The discontinuities are responsiblr for spectral contributions 
(61 leakage) over the entire basis xl The fo~rn) ni ihis du 
contmuity are demonstrated in Fig. 1. 

Windows are weighting functions applied to data to reduce 
the spectral leakage associated with fmite observation inter- 
vals From one viewpoint, the window is applied to data 
(a.5 a multiplicative weighting) to reduce the order of the di.- 
contlnurty at the boundary of the periodic extension. This is 
accomplished by matching as many orders of derivative (of 
the we&red data) as possible at the boundary. The easiest 
way to achieve this matchmg is by setting the value of these 
denvarwes 10 zero or near to zero. Thus windowed data are 
smoothly brought to zero at the boundaries so that the 
periodic extension of the data is continuous in many orders 
of derivative. 
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where 

+=Zk. Nl nndk=O,l;.~,N- I 

From another viewpoint, the window is mukiplioativtdy 
applied to the basis set so that a signal of arbitrary frequency 
will exhibit a ugnificanf projection only oo those basis rectors 
having a frequency close to the signal frequency. Of cause 
both viewpoints lead to identical results. We can w insight 
into window design by occasionaUy switching between these 
Vi.Wp0inti. 

IV. WINDOWS ANND FIGURFS OF MERIT 
Windows are wed in harmonic pnalysk to reduce the unde- 

sirable effects related to spectnl le. Windows implct on 
many attributes of a harmonic prooeso r; these indude detec- 
tability, resolution, dynamic range. confidence, and ease of 
implementation. We would like to identify the major parun- 
eten that will allow perfcrmance comparisons between dil- 
fennt windows. We can best identify the= pawneten by 
examining the effects on harmonic analysis of a window. 

An essentially bandlimited signal f(f) with Fourier transform 
F(w) can be described by the uniformly sampled data set 
/(nT). This data set defmes the periodically extended rpec- 
trum FT(m) by its Fourier series expansion as iden- as 

+- 
F(w) = 

I__ 
f(r) exp (-jut) df 

+m 
F’(w) = 1 f(nn exp (-iwIn 

“=-_ 

+-IT 
f(f) = 

I 
FT(w) exp (+;a) dwl2n 

-?f,T 

(3s) 

(3b) 

(3.9 

and where 
IF( = 0, Iwllfl2n/n 

FT(W) = F(U), IWI c + IZnlTl. 

For (real-world) machine process&, the data most be of 
finite extent, and the rummrtion of (3b) can only by per- 
formed as a fmte approximation as indicated a;i 

+N 2 
F,(w)= i /(nneexP(-iwnn , Neven (41) 

“=-N/2 

(NP-1 
Fb(W)= z ((n77ecxp(-jwn77 , Neven (4b) 

n = -N/2 

(NI2l-L 
F,(w,) = x /(nT) exp (-;w~n77, Never, (4~1 

“=-N,l 

.v 1 
Fdwc) = z J(nT) exp (-;w*nT). N even (4d) 

n=o 

We recognize (4s) ~1 the finite Fourin tnnafonn, , summt 
ticm addrcratd for the corwenience of its even symmetry. 
E.qution (4b) is the finite Fourier transform with the xi&t- 
end Point dckted. and (4~) is the DFT ymplin# of (4b). 
Of c&l- for sctui proaaing, PC desire (for count@ pur- 
paa in a4withms) that the index start .t zero. We accom- 
plkb this by sbifk the start& point of the data N/2 poC 
tions. ,zhawiw (4~) to(dd). Equation (4d) is the forward DFT 
‘lie N/2 shift will affect only the phue an&s of the tnns 
form. a for th? amvw.dence of symmetry we will address tbc 
window 11 being centered St the origin. We alao identify tbi? 
convenkaa u ‘ rmjor source of window misappliuhon. The 
shift of N/2 pc4nia and its dtmt phase shift is often over- 
looked or h impmpCay ham&d in the definition of the 
wiodor when usd with the DFT. This is putintkrly so when 
the window@ is performed as. s~echal convolution. See the 
dismion on the Fbmin# window under the cm= (1) 
windows. 

The question nor Poled is. to what sxtent is the fink@ 
sumrmtion of (4b) a manin@ approxinutim of the in6nite 
summatim of (3b)? In facts we addrcr the question for c 
more encnl case of m arbitnry window applird to the time 
function (or &ried) a.5 plxxntcd in 

F,(u) = i7’ ww9mn exp (-iwnn (5) 
a=-- 

where 

and 

w(nT)=O. N even 

w(n7-J = w(-nn, 

L.et us *ov e umine the effects of the window on o,u 
Jpcctnl estimate. Equlioa (5) shhoan that the transfoml 
F,(w) ti the transform of . product. As indicated Ur the 
fouowing equation, ttds is eqtivaknt to the con*olution of 
the two comxponding tnnsforms (see Appendix): 

F,(w) = 
/- 

F(x) W(w x)dx/2n (6) 
_m 

F,(w) = F(w) l W(w) 

Equation (6) is the key to the effects of procoed& rtite. 
extent data. The equation an he interpreted in two cquira- 
lent waya, ahic,, wi” be more c,,i,y vinulired with the aid 
of an cxampk. The example we choose U the sampled 
rectanzle wiodowa; ~(“7’) = 1.0. We know W(w) is the 
h&let kernel (4 I presec.ted as 

N 

UT 
sin 

W(w) =exp ” 
( 1 

u. 
TUT 

1 

1 I 

(7) 

sin TWT 

- 



except for the linear phase shift term (which will change due 
to the N,2 point shift for realizability), a single period of the 
transform has the form indicated in Fig. 5. The observation 
mmm,~ (6) is that the value of F,(w) at a particular W, 
say w - weI is the sum of ali of the spectral contributions at 
each w wcigbted by the window centered at we and measured 
at w (see Fig. 6). 

A. Equivalent Noise Bandwidth 

From Fii. 6, we observe @at the amplitude of the harmonic 
estimate at P given frzqoency is biased by the accumulated 
broad-band noise included in the bandwidth of the window. 
In this ywe, the wiodoa behaves a9 a Nter, gathering conm- 
butiona for its estimate over its bandwidth. For the harmonic 
detection problem, we de&e to minimize this accumulated 
noise &oat, md we accomplish this with small-bandwidth 
window. A cawenient measure of this baodwidth is the 
equivalent noise bandwidth (ENBW) of the window. This is 
the width of a ncta,&e ftiter with the same pcok power sain 
that would accumtitc the same noise power (se-e Fii. 7). 

The xcumolated noise power of the window is dcfmed as 

I 

+-IT 
Noise Power = No IW(w)l’ dw/?n (8) 

-“,T 

where No Is the noise power pet unit bandwidth. Pameva’s 
theorem allows (8) to be computed by 

Noixe Power = F 2 w’(nT). 
n 

The peak power gain of the window occurs at w = 0. the zero 
frequency power gain. and is defined by 

Peak Signal Gain * W(0) - x w(nT) (lOa) 
n 

PcakPowerGaio- W’(O)= c w(nT) ‘~ (lob) [ 1 n 
Tbur the ENBW (normalized by N,/T, the noise power per 
bin) is given in the following equation and is tabulated for the 
windows of this report in Table I 

z w’(nT) 
2’ (I I) 

A coocept closely tied to ENBW is procesiog gaiz IPG) 
and processing loss (PL) of a windowed transform We can 
think of the DFT as a bank of matched fdten, where each 

Nter is matched to one of the complex sinusoidal sequencer of 
the basis set [ 31. From this perspective, ,ve can examme the 
PC (sometimes called the coherent gain) of the filter. and we 
can exami”c the PL due to the window having reduced the 
data to zero vplues near the boundaries. Let the i,,put sampled 
sequence be defmed by (12): 

/(nT) = A CXP (+;wrnT) +&IT) IIZJ 

where q(nT) is a white-noise sequence with variance 0:. Then 
the sign.4 component of the windowed spectrum (the matche<: 
filler output) i3 presented in 

Rw*) /,ipul = 2 w(nJ7 A exp (+iw,n7’) exp (-w.+nT) 
n 

=A x w(nT). (13) 
n 

We see that the noiseles measurement (the expected value of 
the nosy measurement) is proportional to the input amplitude 
.A The prownionabty factor is the sum of the window terms. 
which U in fact the dc sigrm, gain of the window. For a 
rectangle wndow tbh factor is N, the number of term m the 
window. For any other window, the gain is reduced due to 
the window smoothly going to zero near the boundaries. This 
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reduction in proportionality factor is important as It repre- 
nents a known bias on spectral amplitudes. Coherent power 
gain. the square of coherent gain. is occasion& the parameter 
listed in the literature. Coherent gain (the summation of (13)) 
normalized by its maximum value N is listed in Table I. 

,-be incoherent component of the windowed transfo”n is 
,$ven by 

‘7%) jnc.iac =x w(nT)q(nT) exp (-ianT) (14a) 
n 

and the incoherent power (the meansquarr value of this co”,- 
panent where E { } is the expectation operator) is given by 

E{IF(wr)/.,,I’l = 2 x w(nT)w(mT)EIq(nT)q*(mr)) 
n m 

exp (-jw*nT) exp (+jwrmT) 

= 0; x w’(nr). (I‘%) 
n 

Notice the incoherent power gain is the sum of the squares of 
the window tertes, and the coherent power gain is the square 
of the sum of the window terms. 

Finally, P’S, which is dcfqxd as the ratio of output s&nal- 
tcmoise ratio to input signal-tcmoise ratio, is given. by 

pG~S,,N, -A’ [? w(nr)]p’ & w’(nT) 

W’i A’/O:, 

.[ 1 c wcnn 2 
;: w’(nr) n 

Notice PG is the reciprocal of the normalized ENBW. Thus 
large ENBW suggesta a reduced processing gain. This is reason- 
able, tice an increased noise bandwidth permits additional 
noise to contribute to a spectral estimate. 

c. Over1‘7p Conelation 
When the fast Fourier transform (FFT) is used to process 

long-time sequences a partition length N is fust selected to 
estabbsb the required spectral re-sc~lution of the enolysis. 
Spectral resolution of the FFT is defied in (16) where Af is 
the resol”tion, f, ls the sample frequency selected to latify 
the Nyqut criterion. end 0 is the cafficient rcflecfing the 
bandwidth increuc due to the perticulu window selected. 
Note that [f,/N] is the minimum te.wlution of the FFf which 
we denote as the FFf bin width. The unfficicnt ,4 is usually 
selected to be the ENBW in bina u listed in Table I 

Af=fl ; 0 (16) 

If the window and the FFT are applied to nonovcr,apping 
partitions of the sequence. as shhown in Fig. 8. a slgruricant 
part of the reties is ignored due to the window’s exhibiting 
small values near the boundaks. Far instance. if the transform 
IS being used to detect rho,+duration tone-like signals. the non 
overlapped analysrs could rmss the event if it occurred neu 
the boudancs. To avoid this loss of data. the transfo”ns ax 
usually applied to the overlapped panition sequences as shown 
in Fig. 8. The overlap LS almost always 50 or 75 percent. Thx 
overlap processing of course mcreases the work load to cover 
the total sequence length, but the rewards warrant the extra 
effort. 

rY-: e-1 

Fig. 9. Relationship between indices on Overhppcd intervals. 

A,, imp,,rtant question related to overlapped processing is 
what is the degree of comlation of the random components 
in successi”e transforms? This cnm1ation, as a function of 
fractional overlap r. is deftned for a relatively flat noise spec- 
trum OYCT the window bandwidth by (17). Fig. 9 identifies 
how the indices of (I 7) relate to the overlap of the intervals. 
The correlation coefficient 

is computed and tabulated in Table 1. for each of the windows 
listed for SO- and 75.percent overlap. 

Often in a spectral analysis. the squared magnitude of succes- 
sive ttansfotms are averaged to reduce the va,iance of the mea- 
su~ements (S] We know of co”tse that when we average K 
identically disttibutcd independent measurements. the vati- 
awe of the average is related to the individual vatiansr of the 
measurements by 

kg. -’ __- 
diea K 

t 181 

Now we can ask what is the reduction in the variance when we 
avenge measuemenfs which are correlated as they are for 
ovcrfappcd transforms? Welch 151 has supplied an answer to 
this question which we present here, for the special case of SO- 
and 75.percent overlap 

dn,. ’ 
1. =K’l %ea 

+ ?c’(O.S)] iz; lc’(OS)], 

50 percent overlap 

=;ll+2c’ (0.75)+ 2c’(o.s)+ Zc’(O.2S)l 

$ lc’(O.75)+ 2~‘(0.5)+3~‘(0.25j1. 

75 percent overlap. (19) 

The negative terms in (19) are the edge effects of the average 
and can be ignoted if the number of temu K is larger than 
ten. For good windows. ~‘(0.25) Is small campared ,a 1.0. 
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and can also be omitted from (19) with negligible error. For 
this reason, ~(0.25) was not listed in Table I. Note, that for 
good windows (see last paragraph ot Section IV-F), transforms 
taken with SO-percent overlap are essentially independent. 

D. Scalloping Loss 

An important consideration related to minimum detectable 
signal is called scallopiag lass or picket-fence effect. We have 
considered the windowed DFT as a bank of matched ffiten 
and have examined the procexing gain and the reduction of 
this gain ascribable to thb window for tones matched to the 
basis vectols. The b&s vectors are tones with frequencies 
equal to multiples of f,/N (with f, being the sample fre- 
quency). These frequencies are sample points from the 
spectrum. and are nommlly referred to as DFT wtp”t points 
or as DFT bins. We now address the question, what is the 
additional loss in procasing gain for a tone of frequency mid- 
way between two bin frequencies (that is, at frequencies 
(k+ ll2)f,lW 

Returning to (13), with w* replaced by w(~+~,~), v/e deter- 
mi”e the processing gain for this hall-bin frequency shift as 
defined in 

Fk‘J( I,I)) IsigN! = A x w(n73 exp (-iw( ,,,,nT), 
n 

We ah de!ine the scalloping loss as the ratio of coherent gain 
for a tone located half a bin from a DFT sample point to the 
coherent gain for a tone located at a DFT sample point, as 
indicated in 

scalloping Las = 

IT w(nn=w(-jin)( lw(+F)! 
1 w(n?-l = WJ) 
n 

(2Ob) 

Scalloping loss represents the maximun reduction in PC due 
to signal frequency. This loss has been computed for the win- 
dows of this report and has been included in Table I. 

We now make an mtererting observation. We define worst 
case PL as the sun, of maximum sca,,oping loss of a window 
and of PL due to that wmdow (both in decibel). This number 
is the reduction of output s&m&to-noise ratio as a result of 
windowing and of wont case frequency location. This of 
course Is related to the minimum detectable tone in broad- 
band noise. It IS interesting to note that the wont case loss is 
ahays between 3.0 and 4.3 dB. Windows with wont case 
PL exceeding 3.8 dB are very poor windows and should not 

be used. Additional comments on poor windwvx wil! h,’ 
found in Section N-C. We can wncludr from tL< comb: ij~ 
loss fi of Table I and from Fig. 1: that for the deterria?:, 
of single tones in broad-band noise. nearly any window C(AIIC~ 
than the rectangle) is as gcal LS any other. The difference 
between the various windows is less than 1.0 dB and for good 
windows is Icar than 0.7 dB. The detection of t&s in the 
presence of other tones is, however, quite another problem. 
Here the window dccs have P marked affect, as will be demon- 
strated shcdy. 

F. Specml Leakwe Rrvidted 
Returning to (6) and to Fig. 6, we observe the spectral 

measlnment is affected not only by the broadhand coi- 
spectrum, but also by the narrow-band spatrun: rhic!~ ::ti!: 
within the bandwidth of the window. In fact, a given spia~i 
companent say .t w - wg will contribute output (or will bc 
observed) at mother frequency. say .t w = w. according to 
the gain of the window centered .t wo and measured at w.,. 
This is the effect normrlly referred to u spectral leakage and 
Is demonstrated in Fii. 10 with the transform of a finite dun- 
tion tone of frequency wg 

This leakage cases P bias in the amplitude and the position 
of P harmonic estimate. Even for the case of a single real 
harmonic line (not at a DFT sample point), the leakage from 
the kernel on the negative-frequency axis biases the kernel on 
the positive-frequency brie. This bias is most severe and “10s: 
bothersome for the detection of small signals in the presence 
of nearby huge signals. To reduce the effects of this bias, the 
window should exhibit low-amplitude sidelobes far from the 
central main Lobe, and the transition to the low sidelobes 
should be very rapid. One indicator of how well a window 
suppresses leakage h the peak sidelobe level (relative to the 
main lobe): another is the asymptotic rate of falloff of thesp 
sidelobes. TIew indicators are listed in Table 1. 

Fig. I1 suggests another criterion with which w%. should: 1, 
concerned in the window selection process. Since the win<ii>\v 
imposes an effective bandwidth on the spectral line, we would 
be interested in the minimum separation between two equal- 
strength lines such that for arbitrary spectral locations their 
respective main lobes can be resolved. The classic criterion for 
this resolution is the width of the window at the half-power 
points (the 3.0.dB bandwidth). This criterion reflects the fact 
that two equalstrength main lobes separated in frequency by 
less than their 3.0.dB bandwidths will exhibit a single spectral 
peak and will not be resolved as two distinct lines. The 
problem with this criterion is that it does not work for the 
coherent addition we find in the DFT. The DF? output 
points are the coherent addition of the spectral components 
weighted through the window at a given frequency. 



If two kernels M contributing to the coherent summation, 
the sum at the crc6so”er point bvxnidly half-way between 
them) must be smaller than the individual pea!~s if the two 
peaks arc to be resolved. Thus at the crossover points 01 fhc 
kernels, the gain from each kernel mwt be less than 0.5,01 the 
crcssovcr points must occur beyond the 6.0-dB points of the 
windoan. Table I lists the 6.C-dB bandwidths of the variOU 
window e xamined in this report. From the table, we see that 
the 6.0sdB bandwidth varies from 1.2 bins to 2.6 bins, where a 
bin is the fundamental frequency resolution w,/h’. The 
3.0-dB bandwidth does have utility as P pafommncc lniicator 
as shown in the next paragraph. Remember however. it is the 
6.0-dB bandwidth which defmes the resolution of the win. 
dowed DFT. 

Fro,,, Table I, we see that the noise handwidth always 
exceeda the 3.0-dB bandwidth. The difference between the 
two, mfercnced to the 3.0-dB bandwidth, appears to be a 
sensitive indicator of overall window perfotmnnce. We have 
observed that for all the wad windows on the table, this 
indicator was found to be in the range of 4.0 to 5.5 percent. 
Tbae window8 for which this ratio is outside that range 
either have L wide main lobe or a bigb sidelobe structure and, 
hena. arc chancterized by hi& processing las.s or by poor 

i;.. 

two-tone detection capabilities. Those windows for which 
this mtio ia inside the 4.0 to 5.5perant range are found in 
the lower lcft’urraa of the ~erformvla comparison chart 

1; (Fe. 12). which is deaaibed next, 
.< While Table I dces list the common performance param- 
;; cten of the windova e xamined in this report, the mass of 
: numben U not s~tenins. We do nti that the aidelobe 

‘:, kvd (to mducs hhs) and the wont case procrtsiag Ices (to 
xauindn dstsctabi&y) am probably the meat important 
paameten on the table. Fig. 12 shows the relative position 
of the tidorr u i hmtion of tbwc parameters. Windows 
rcaidiug in the lower left comer of the fwe are the good- 

~‘~perforudng windgaa. They exhibit low-sidelobe levels and 
low aomt am proasdne loss. We urge. the reader to read 

~‘seetioru VI and VU; Fii. 12 praents a lot of infonmtioo, 
but not the Ml Itmy. 

v. c-c WrNwws 
We wiII nc.w utdw ame reU-kaown (and some not ~weU- 

know window% For each window we will comment on the 
L jutifiatim for ita ua and identify Ita significant p-eten. 
_ AU the tidowa uiiJ be wkd aa even (about the ori@n) 

aeqtrsncu with m odd muhbex of Q&&S. To convert the win- 
dew to DFFeven. the t,&cnd point will be discarded and 
the seqcqucna dl be shIfted so that the left cod point coin- 
cidea with the origin. We uiUuss normalized coordinates with 

defined as 

w(n)= 1.0, “=O.I:~~,N- I C:lhI 

The spectral window for the DFT window sequence 1s @*en in N Eln N- I 
W(S) = exp -, ((2 1. [ 1 Te 

-,g -___ 

[ 1 
I:,<, sm ;a 

The transform of this wi”dow is seen to be the Dmchlcr 
kernel. which exhibits a DFT main-lobe width (between LCCTO 
crcssingx) of 2 bins and a fmt sidelobe level approum.wly I3 
dB down from the main-lobe peak. The sidelobes fti off II 
6.0 dB per octave, which is of course the expected rate lo, a 
function with P discontinuity. The parmeterr of the DFT 
window are listed in Table 1. 

sample petiod r = I .o, So tb:ir w in pcnodic in 27r m, ‘len<,i: 
will be identified 18 0. A DFT bin will be considered to question posed earlier: in what rense does tbr finrtc sun of 
extend between DFT sample points (multipleo of 2n,A’, and (224 aPProtiate the infinite sum of (22b)? 
have, width of 2nlN. +?v,z 
A. RrcrangIe IDirichkr) Window /6] F(B) = x f(n) cxp (-inO) (::a) 

“=-N,I 
The rectansle window is unity over the observation interval. 

md can be tholyht of as a gating sequence applied to the data t- 
so that they are of finite extent. Tbc window for a finire F(B) = x f(n) exp (-inO). (:?b) 
Fourier transform is defined as n=-_ 

w(n)=l.O. “= +- 
N We observe the tiite sum is the rectangle-windowed verxon of 

1.0. 1, 1 (2la) the infinite, mm. W’ recognize that~ the infinite rum is the 
Fouler smes ex~ansmn of some periodic function for which 

and is shown in Fig. L3. The same window for a DFT is the I(n)? are the Foutier series coefficients. We also recognize 

- 
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that the finite sum is simply the partial sum of the series. and the spectral window corresponding to the DFT sequeoce is 
From this viewpoint we can cast the question in terms of the given in 
convergence properties of the partial sums of Fouier series. 
From this work we know the partial sum is the least mean- 
square error approximation to the infmite sum 

We observe that mean square convergence IS a convement 
analytic concept, but it is not attractive for finite estimates ot 
ior numencd approximations. Meansquare estimates tend to 

w@~=~exp [-i(N;- 1) e] 

orcdlate about their means. and do not exhibit umtorm con- 
vergence. (The approximation in a neighborhood of a point of 
contlnulty may get worse if more terms are added to the 
pamal rum.l We normally observe this behavior near pomtr of 
dlrcantmuity as the figin& we call Gibbs phenomenon. It is 
th,s orcibtory behavior we UC trying to control by the “se of 
other wndows. 

W(n) = 1 .o Jr?! N 
N/2’ n=--,“‘. 2 

-l.o,l.--‘.~ (23a) 

and ~1 shown in Fig 14. The same wmdow for a DFT 1s 
defined as 

The transform of this window is seen to be the squared 
Dirichlet kernel. Its main-lobe width (between zero crossings) 
ix twice that of the nctan%e’r and the fu-st ndelobe level is 
approximately 26 dB down from the main-lobe peak. e&n. 
twxe that of the rectandc’s. The sidelobes fall off at 12 dB 
per octwe, reflecting the discontinuity of the nndow residing 
in the first derivative (rather than in the funcuon Itulf, The 
triangle is the simplest window which exhihtts a nonneeatiw 
tranrftxw ‘3%~ property can be retired by ronvolvi,,.: a,‘, 
wmdaw (of half-extent) with itxlf. The resultant wi,dow’! 
transform is the square of the o,i@nal window’s tnnsfonn. 

A wndow sequence derived by self-conrolm a parent srin- 
dew contains approximately twice the number of samples as 
the parent window, hence curesponds to . tnwwxnetnc 
polynomiaJ (its Z-transform) of approximately twit-e the 
order. (Convol~ two recta,@es each of N/2 points wi” 
result in a ttianglc of N + 1 points when the zero end points 
are counted.) The transform of the window will now exhibit 
twce ar many zeros as the parent transform (to account for 
the increased order of the associated trigonometric poly- 
nomial,. But how has the transform applied these extra zeros 
availabie from the increased order polynomial? The self- 



of the cosine function. These propeties are particularly 
attractive under the DFT. The wmdow for a finite Fourier 
transform is defied as 

convolved window simply places repented zeros at each IOCa- 
tion for which the parent transform had a zero. This, Of 
came, nor only seta the trash-m to zero zt those points, but 
also ,ets the tint derivative to zero at those points. If the 
intent of the i,,creaed order of polynomial is to hold down 
the sidelobe Ierslr, then doubling up on the zeros is a wasteful 
twtic. The additionnl zerca might better be placed between 
the existing zeroa (near the Id pelts of the sidelobes) to 
hold down the sidelobea rather than at locations for which 
the tnnaform i, already equal to zero. In fact we will observe 
in subsequent winders that very few good windows exhibit 
reprted roota. 

hckin.g up for a moment. it is interesting to examine the 
trim& window in terms of putul+un conrer~ncc of 
Fourier win. Fejcz observed that the pamnl sums of Fourier 
series were poor numericd approximations I8 I. F0lUier 
coefficients were ury to gwzrate however, and he questioned 
if some simple maditiution of coefficients might lead to a 
new set with mom desirable conrerynce properdes The 
oscillation of the partial sum, and the contraction of those 
os.ziUations its the order of the partiaJ sum increased. suggested 
that an .veng of the partiaJ surm would be a smoother 
function. Fii. IS prernts an expulsion of twc. partial sums 
near P diswntmuity. Notice the ..- of the two expansions 
is smoother thm either. Contintxiru in this line of reasoning. 
an averwe expansion FN(B) mi#d be defined by 

F~(e)=~IF~.,(e)+F~-*(e)+“~+F,(e)l (24) 

where FM(O) is the M<erm partial sum tif the wies~ Tti is 
easily - in TsbL II. which lists the nonzero cceffi- 
cicnb of the fuxt four parti., sums rad their avenge summa- 
tion. We see that the Fejer converaencc factors applied to the 
Fourier series coefficienta is, in fact. a triangle window. The 
averaging of partial lums is known 8?1 the method of Ccsaro 
summability 

Thw is actu”y a f&y of windows dependent upon the 
parameter (I, with (I no”naUy being an ir,teger. Attractmnr of 
this family include the ease with which the terms can be 
generated, and the easily identified properties of the transform 

and for a DFT as 

Notice the effect due to the change of the ori@x~ The most 
common values of a are the integer5 1 through 4. with 2 hew 
the most we” known (as the Harming window). Tbis wmdou 
is identified for values of a equal to 1 and 2 in (263’ iZk:,s 
(27a). and (27b), (the “a” for the finire transforms. the “h” 
for the DFT): 

(I = 1 .O (cosine lobe) 

[ 1 N w(n)=cos ;n , n= -i,‘.‘, IV -I,o.I;“.~ mm) 
(I = I .a (tie lobe) 

n-0.1.2;..,N- 1 

(I = 2.0 (cosine squared, raised cosine. Harming) 

N N 
n=---,“’ 

2 
,-l,O,l:~~.~ (2ial 

a = 2.0 (sine squared. raised cosine, Ha&g) 

w(n) = sin’ 
[ I 

1, 

=0.5 , ,:. cw ,$?]] . n=O,I,2;‘..A’- I 

(27b) 

The windows are showm for (L integer values of I through 4 m 
Figs 16 through 19. Notice as 01 becomes larger. the wndows 
become rmoother and the transfom, reflects thilr increared 
smo~otbnmcss in decreased sidelobc level and faster falloff of :he 
sidelabcs. but with an increased width of the main lobe. 

Of particular interest in this family, is the Ham window 
(after the Austria,, meteorologist, Julius Von Ham,) [ 7 I. Not 
only is this window continuous, but so is its first derivatjve. 
Since the discontiuity of this window resides in the second 
derivative, the transfam, falls off at I/w3 or at 18 dB per 
octave. Let us closely emmine the transform of this window. 
We will gti some inteRsting insight and learn of a clever 
appbcation of the window under the DFT. 
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(b) 

(b) ‘o*-magDi*“de Of tr.rnfmln. 



ne ymp,ed Haming window can be written as the sum Of 
the sequences indicated in 

- 

w(n) = 0.5 + 0.3 cos 
[ 

2n 1 
N “J ) 

“_.N ..,, 
2’ 

-l,O,l;.., ;- 1. (Z&a) 

Exh sequence hu the easily recognized DFT indicated in 

iv(e)=osD(e)+0.25 D e-y +fl e+; [ ( “) ( ‘“)I ‘t2W 

where 

D(e)=exp(+it) ‘f ‘. 
sin Te [ 1 

We recognize the DirichIet kernel at the or&in as the transform 
of the constant 0.5 samples and the pair of translated kernels 
as the trtnsfonn of the single cycle of cosine samples. Note 
that the translated kernels are located on the fuxt zeros of the 
center kernel, and arc half the size of the center kernel. Also 
the side‘obcs of the translated kernel are about half the sizz 
and are of opposite phase of the sidelobes of the Central 
kernel. The summation of the three kernels sidelobes bcti in 
phse opposition. tends to cancel the sidclobc structure. m 
ClnceIIing summation is demonstrated in Fig. 20 which depicts 
the summation of the Dirichlet kernels (without the phase- 
shift term). 

The pattial cancelling of the sidelobe structure su%gssts 1 
cm,str,,ctisc technique to defme new windows. The mat 
we&horn of these are the Hamming and the BLzckman 
windows which are presented in the next two sections. 

For the special case of the DFT. the HamUg window is 
sampled at multipks of 2*/N, which of course am the loca- 
tions of the tcrca of the central Dirichict kernel. Thus only 

three nonzero sampka are taken in the SampIhlg pPxa.- The 
positions of these samples UC ,t -2x/N, 0, and +2x/N. The 
due of the samples obtained from (28b) (including the phase 
factor exp (-j(N/2)8) to wautt for the N/2 shift) M - $, 
++, - ;, rcrpectireIy. Note the minus s&us. l-hue results 
from the shift in the origin for the window. Without the shift. 
the pha term h missing and the urfticknts are all positive 
f , +, ;. These am in- for DFT proardng. but they 
find their way into much of the Htentruo and practice. 

Rather than apply the window aa a product in the time 
domain, we always have the option to apply it IS a conwl:i 
tion in the frequency domain. The attraction of the Harming 
window for this application is twofold; tint. the window 
spectra is nonzero at only thee data pain”, and second. the 
sample values M binary fnctioaa, xbich can be implemented 
as tight shifts. Thus the Haming-windowed spectral points 
obtained from the rectangle-windowed spectral points are 
obtained as indicated in the following equation as two real 
adds and two binary shifts (to multiply by f): 

f(k)/Hdw = f [f(k) f (F(k 1) 

or as 2N reai adds and 2N binary shifts on the spectral Jar;l~ 
One other mildly important consideration, if the window !s io 
be applied to the time data. is that the samples of the u,r,~.Io~~ 
must be stored somewhere, which normally means additional 
memory or hardware. It so happens that the samples of the 
cosine for tix Hatming window are already stored in the 
machine as the trig-table for the FFT; thus the Hamung 
window requires no additional storage. 

D. Hamming Window [7/ 
The Hamming window can be thought of’as a modified 

Hatming window. (Note the potential source of confuion m 
the similarities of the two name,.) Referring back to Fig.. I7 
and 20, we note the inexact cancellation of the sidelobes from 
the summation of the three kernels. We can construct d wiw 
dew by adjusting the relative size of the kernels as indicated in 
the following to achieve a more desirable form of cancellation 

277 
w(n)=u+(I -a)cos N” [ 1 
w(e)=ao(e)+o.s(l-a) D e-2 +D e+z 

[ ( N) ( N)] 

(3Oa) 

Perfect cancellation of the fmt sidelobe (at 0 = 2.5 [?n/Nl) 
occm when (I = 25146 (a = 0.543 478 261). If a is selected a 
0.54 (an approtimation to 25146). the new zero occurs af 
0 A 2.612n/Nl and a marked improvement in sidclobe level 1s 
realized. For this value of (1. the window is called the Ham- 
ming .window and is identified by 

0.54 + 0.46 cos [ 1 2” n 
N ’ 

0.54 0.46 CM ‘;n , [ 1 

+.=(k+l)ll /R-. (29) 

I n=O,l.2;...N- I. (30b) 

The coefficients of the Hamming window are nearly the set 
wbxh a&eve mmmm sidelobe levels. If a is selected to be 
0,53856 the sidelobe level is -43 dB and the resultant window 
LS P rpccial case of the Blackman-Harris windows presented in 
Sccaon V-E. The Hamming window is shown in Fig. 2 I. 
Vouce the deep attenuation at the missing sidelobe position. 
Note also that the small discontinuity at the boundary of the 
wmdow has resulted m a I/w (6.0 dB per octave) rate of 

Thus P Harming window applied to a real transform of length falloff. The better sidelobe canceUation does result in a much 
N can be wrformed as N real multiplier on the tune sequence lower initial sidelobe level of 42 dB. Table I lists the param- 

I .  



eters of this window. Also note the loss of binary weighting; 
hence the need to perform multiplication to apply the 
weighting factors of the spectral convolution. 

E. Blackman Window [7/ 

The Hamming and Harming windows ale examples of wir- 
dows constmcred as the summation of shifted Dlrichlet ker- 
nels. This data window is defined for the finite Fourier trans- 
form in 131a) and ior the DFT 1n(3lb):equation(3lc)is the 
resultant spectral window for the DFT given as a summation 
of the Dtiichiet kerneis D(8) defined by W(9) I,, (2,c,; 

of this form with a0 and 0, being oonzero. We see that their 
spectral windows are summations of three-shifted kernels. 

We can construct windows with any K nonzero coefficients 
and achieve a (2K- I) summation of kernels. We recognize. 
however. that one way to achieve windows with a narrow main 
lobe is to restrict K to a small integer. Blackman examined 
this window for K = 3 and found the values of the nonzero 
coefficients which place zeros at 0 = 3.5 (?n/N) and at 0 = 45 
(2nlN). the position of the third and the fourth sidelobes. 
respectively, of the central Dirichlet kernel. These exact 
values and their two place approximations are 

7936 
N 

a0 
= ---- 0.426 590 71 = 0,42 

I8608 

9240 
(3l.a) a’ = --& 0.496 560 62 = 0.50 

18608 . 
n=O.I:....V~ 1 ~ 1430 

a2 = 18608 
A 0.076 848 67 = 0~08 

m=o 

(3lb) The window which uses these two place approximations is 

W(O)= x ,-I) w’2 -+(+)+D(O+;m)]~ 

known as the Blackman window. When we describe this 
window with the “exact” coefficients we will refer to it as 

m=o the exact Blackman window. The Blackman window is de- 

,31Cl 
fined for the finite transform in the following equation and 
the window is shown in Fig. 22: 

Sublect to constraint 

N/2 
, z “m = 1.0~ 

Wini=O~42+0.5Ocnr[~n] +0.08+2,]. 

i 

m=o N 

We ian see that the Harming and the Hamming windows are “=---.“‘. 



The exact Blackman window is sbom in Fig. 23. The sidelobe 
level is 5 I dR down for the exact Blackman window anal is 58 
dB down for the Blackman ‘window. As an observation. note 
that the coefficients of the Blackman window sum to zero 
(0.42 -0.50 +0.08) at the boundaries while the exact coei- 
ticicntn do not. Thus the Blackman window is continuous 
with a continuous fr% derivative at the boundary and falls off 
like I/w’ or I8 dB per octave. The exact terms (like the 
Hamming wmdow) have a discontinuny at the boundary and 
falls off like l/w or 6 dB per octave. Table I Lists the param- 

sidelobe level. We have also constructed families of 3~ an,, 1~ 
Lerm window in which we trade ~nain-lobe width Ior SIIIC/L)II~~ 
level. WC caU this family the Blackman-Harris wmduu U,, 
have found that the minimum )-term window can achlrvr II 
sidelobe level of -67 dB and that the minimum d-term urns 
dow can acbwe a sidelobe level of -92 dB. These wmdowi 
are defined for the DFT by 

eten of these two windows. Note that for this class of w,,- 
down. the ao coefficxnt is the coherent gain of rhc wmdow 

n=O.I.::--..v- 1~ ,3?l 

Using a gradient search technique 191, we have found the Thr l~tcd coeiiicients correspond to the mmm~um 3.term 
windows which for 3. and 4.nonzero terms achieve a mintmum wmdow uhlch is presented in Fig. 24, another 3-rerm wmdou 



3.Term 3-T- 4-TCrm GTW 
(47 dB) (41 dB) (-92 **, (-74 dB, 

00 0.42323 0.44959 0.35875 0.40217 
01 0.49755 0.49364 0.48829 0.49703 
a* 0.07922 0.05677 0.14128 0.09392 
a3 0.01168 0.00183 

(to establish another data point in Fii 12). the minimum 4- 
term window (to also eatablisb a data point in Fii. 12). md 
another &term window which is pxsented in Fig. 25. The 
particular d-term window shown is one which performs refl 
in a detection example described in Sxtion VI (see F& 69). 
The p-eters of these windows ue lined i,, Table I. Note in 
particular where the Blackman and the Blackman-Hanis win- 
dows reside in Fig. 12. They are surprisingly good windows 
for the small number of terms in their trigonometric series. 
Note, if we were lo extend the Line corme&ng the Blackmae- 
Harris family it would intereat the Hamming window which. 
in Section V-D . we noted is neviy the minimum sidelobe level 
2-tern Blackman-Harris window. 

We also mentioo that agood approximation to the Blackman- 
Harris 3- and 4-term windows ca,, be obtained as xa,ed 
sampler of the Kaise-Eeszzl window‘s tmns(one (see Section 
V-H). We have used this approximation to construct b-term 
windows for adjustable bandwidth convolutional fdten as 
reponed in [ 101. This approximation is defmed as 

ho :!!!? .,=2%- m=:1,2,()). c c3 
(341 

The 4 coefficients for this approximation when a = 3.0 are 
*o = 0.40243, o, = 0.49804. ,,I = 0.0983 I, and a, = 0.00122. 
Notice how close thus terms are to the selected 4.term 
Blackman-Harris (- 74 dB) window. The window dcfmcd hy 
Ome coefficients is shown in Fig. 26. Like the prototype 
from which it came (the Kaiser-Bessel with a = 3.0). thus 
Wmdow exbihits sidelobes just shy of -70 dB from the ream 
lobe. On the rcale show,,. the two are indistinguisbahlr 
The parameters of this window are also Listed in Table I and 
the wmdow is entered in Fig. 12 as the “4sample Kaiser- 
ksc.” If was these 3. and 4Smple Kaiser-Bessel prototype 

windows (pmmetcrized on a) which were the starting condl- 
tions for the gradient minimizatioo which lads to the Bhck- 
n~~-Hurin windows. The optimization starting with tbes 
mefftients baa virtually no effect on the main-lobe chancter- 
Mica but does drive down the aidelobes appmtintely 5 dB. 

Numennu bmst+ton have co-ted windows as prod- 
ucts, as sums, a.3 satiom, or a.3 convolutions of simple func- 
tions and of other ximple tidoas. ‘“xx window have heen 
constructed for certain desirable fcshns, no, the law /.I 
which is the attnctioo of simple functions for genera& tiir. 
window terms. In gmmnf, the constructed windows tend no, 
to be 8c.d windows, and ocosionnlly arc very bad windows. 
We hare llrudy eramincd some ximplc window coostmctions. 
The Fejer @arUett) window. for tianoe, is the convolution 
of two rectangle windows; the Hamming window is the sum of 
a rcct+nde and a Harming window; and the cos’(X, window 
is the product of two t&am& windows We will now enmine 
other mnstructed windows that have appeared m the Iitem- 
twe.~ We wiU present them so they me available for compti- 
so”. later we will examine windows constructed ,n accort, 
with some criteria of optima,ity.(sce Sectrons VG. H. 1. an.: 
I). Each window is identified only for the foute Fourier trans. 
form A simple shift of N/2 paints and right end-pomt dele- 
tion mll supply the DFf version. The slgruficant figures of 
~~rformancc for these windows are also found in Table I~ 

1) Rirsz (Bochner. Punen] Window fll/~~ The Raeu XVII- 
dew. identified as 

lb+)= 1.0. 
n = 

Ii NJ2 ’ 
05) 

ii thr cinlplest ~ontinuou polynominl window II exhlhits 
di~:ontmuoos fnt derivative at the boundaries; hrnl::: !:, 
tramfo”” fa”s Off bke I/w’. The window is rhowvn in F&; 
27. The fnt ddclobe is -22 dB from the main lohe~ This 
window is similar to the cosine lobe (26) IS can he demon- 
strated by e xammmg its Taylor series expulsion. 

21 Riemmn Window 1121: The Riemann window, defined 
by r . 

w(n)= 
N 

oG’“‘Gi 
(36) 

is the central lobe of the SING kernel. This wmdow is con- - 



tim,ous, with o di,cootiouous fnt derivative at the boundary. 
It is similar to the Ricsz md cosine lobe windows. The 
Ricmmn window U shown in Figs 20. 

31 de in Valid-Powsin (Jackson. Punen) Window [II]. The 
de la VallC-PouSan window is P piecewise cubic curve ob- 
tained by self-convolving two triangles of half extent or four 
rectangles of one-fourth extent. It is defined as 

The window is continuous up to itr third derivative so that its 
sidelpbes fall off like I/w’. The window is shown I” I:IF 20~ 
Notice the trade off of main-lobe width for sidelobe level. 
Compare this wth the rectangle and the triangle. It is a non- 
naativ~ window by virtue of its self-convolution const~~tioa~. 

41 Tukcy Window [13l: The Tukey window, often called 
the cosine-tapered window. is best imagined as a wsine lobe of 
width ia/Z)N convolved with a rectangle window of width 
I 1 .O nil)A’ Of course the rrsultdrrl transfurm AS the product 
of the two corresponding transforms. The window rspiesznts 
an attempt to smoothly ret the data to zero at the bouaddtizs 
while not significantly reducin& the processing gam of thr 
wmdowed transform The window evolves from the rectangle 
to the Harming windou as the parameter o varies from zero lo 

(37: umty. The family of windows exhibits a confusing anay 31 



tidelobe levels arising from the product of the two component 
Innsfo”ns. The window is dcti.ed by 

i 

I .o. 
N 

061”16UZ 

u(n) = 

0.5 

, 

(38) 

‘fbhe tindow is shown in Figri. 3&32 for values of (I equal to 
0.25. 0.50. and 0.75. respectively. 

51 Bohrnon Window 1141: The Ekhman window is o& 

tained by the convolution of two half-duration cosine lobes 
(261). thus its transform is the square of the cosine lobz’s 
tmm.fohn (see Fii. 16). in the time domain tbc wndow I 11, 
be described as a product of a trim@ window with a single 
cycle of a Mine with the same period and. the”, a comective 
term added to %et the first derivative to zero at the boundary. 
Thu the second derivative is cmtinuous, and the disconti- 
nutty resides in the third derivative. 7%~ transform fatIs off like 
I/w’. The window is defmcd in the folloti~ and is showo in 
Fii 33: 



6) Poisson Window 1121: The Poison window is P two- observed in Table I as a large equivalent rroise bandwIdth and 
sided exponential defmed by as a large worst case processing 109s. 

In I 
win)=exp -a- 

( ) N/2 
O<l”lC~. 

71 Homing-Poimm Window: The Hanning-Poisson wit- 
(40) dew U constructed as the product of the Hanrung and the 

Ponson window. The family is defmed by 

This is actually P family of windows panmetctied on the 
variable a. Since it exhibits a discontinuity at the houndties. 
the tran?lform can fall off no faster than I/w. The window is 
shown in F&s 34-36 for values of d equal to 2.0. 3~0, and 4.0. 

~,“,=~~s~.~+~-[=~~~~p(.~~), OC,“,<fy 

rewectivcly. Notice as the discontinuity at the boundtier 
(41) 

becomes smdlcr. fhe sidelobe str”cture merges into rh: Ths window is similar to the Poisson window. The rate of 
asymptote. Also no,e the very wide main lobe: this will be sidelobe falloff is determined by the discontinuity in the first 



derivative at the origin and is l/w’. Notice as a increaser, 
forcing more of the exponential into the Harming window. 
the zeros of the nidelobc structure disappear and the lobes 
mrrge into the asymptote. This window is shown in Figs, 
37-39 for values of (I equal to 0.5, 1.0, and 2~0. respectively. 
Awn note the very large main-lobe width 

8: Cauchg (Abel, Poisson) Window (I5]: T’t~he Cauchy wti- 
dow is a family parametefized on Q and defined by 

I 
w(n) = 

I 

n 1” 
O<,“l<!~ (42) 

‘.O+ “GJ 

The wmdow is shown in Figs 40-42 ior valws of Q ~quzl to 
3.0, 4 0. and 5~0. respectively. Note the transform of the 

Cauchy window is a two-sided exponent,,, (see Poisson wm, 
dews), which when presented on a log-mumtude scale II 
essentially an isoreles triangle. This C~LIYI the wincl:~ * I,, 
ezhibif a very wide main lobe and to have I large EEX!W. 

Windows ax smooth positive functions wlh tall thin 0.c 
concer.trated) Fourier transforms. From the generaluc.. 
uncertainty principle, we know WC cannot dmultaneouslii 
concentrate both a signal and its Fourier transform If ou 
measure of concentration is the mean-square time duration :: 
and the mean-square bandwidth W. we know all fcncuon 
satisfy the inequality of 
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with equality being achiclcd only for the Gau5ian ~~1161. 
Thus the Gauszian pulse. characterized by minimum time- 
bandwidth product, is a rcuonablc candidate for a window. 
when WC “se the GaU pulse as a window we havr to tnu- 
ute or discard the tails. By rest&t& the puke to be finite 
Icwth, the window no longer is minimum time-bandwidth. 
If the trvnution point is beyond the thrwAgmr point, the 
crro’ would be small. and the window should be a good 
*PProumation to minimum time-hndwidth. 

The Catin window is dcf,ed by 

dn) = exp 
n = Clr 11 -T”- N/2 

(44) 

(‘Mb) 

Thu window is paameterized 0x1 a. the reciprocal of the 
standard deviation. a measure of the width of its Fourier 
tranrfomr. lnclease d a will decrease with the width of the 
-doe, and reduce the severity of the discontinuity at the 
boundaries. ThrS will result ti an increased width transform 



mam lobe and decreased sidelohe levcls~ The wmdow is 
presented ir. F&s 43, 44. and 42 for values of a equli !o I,?, 
3.0. and 3.5, respectively. Nate the rapid drop-off rate of 
sldelcbe lrvel in the exchange of ddelobc level for mam-lobe 
width. The fiurer cf merit for this wlndcw arc lured in 
Table I. 

. 
apenure to achieve a narrow main-lobe beam partwn wb& 
simultaneously restricting sidelobe rc~ponx. (The antenna 
drsignrr calls his weighting procedure Ihrrdinx.) The closed- 
form solution to the minimum main-lobe width for a given 
sidelobe level is the Dolph-Chebyshcv window (shading) 
The continuous solution to the problem exhibits impulses at 
the bvundtics which restricts continnuous realizations to 
aFprOX~atlOns (the Taylor approximrfion). The discrete or 
sampled window is not so redtxictsd. and the solution can be 
unpiemented e,.actly. 

The relatvx~ T,C.U! = cos (n9) describes a mapping between 
the nth-order Cbebyshev (algebraic) polynomial and the nth- 
wdcr trxganome:tic polynomiai. Tix Dolph4Yhebyxhe> 



window is defied with this mapping in the following equa- 
tion, i,, terms of u,,ifom,ly spaced runpla of the window’s 
Fourier tnnsform. 

where 

O<IkI<N- I (45) 

0 = cash 1’ ; cash- (IO’) 1 

and * 

1 

” - tat-’ [X/&TO X’], 
cos-‘(x)= 2 

IX1 c 1.0 

In Ix+~Fxcil, 1x1> 1.0. 

To obtain the ccmcapooding window time samples w(n), we 
nmply perform a DFT on the samples W(k) and then scale 
for unity peak amplitude. The parameter (I reprevnts the log 
of the ratio of mak,in-lok level to sidelobe level. Thus a value 
of o equal to 3.0 rcprcscnto sidelobes 3.0 decades down from 
the main lobe, or sidelobes 60.0 dB below the main lobe. The 
(- I)’ al,ernates the dgn of successlre nansfoml samples to 
reflect the shifted origin in the time domair. The wmdow is 

., 



presented in Figs. 46-49 for values of Q equal t” 2.5, 3.0, 
3.5, and 4.0, respectively. Note the uniformity of the sidelobe 
structure; almost sinusoidal! It is this uniform oscillation 
which is responsible for the impulses in the window. 

J. Kaiser-Bessel Window /I81 

Let us examine for a m”ment the optimalily criteria of the 
last two sections. In Section V-G we sought the function 
with minimum time-bandwidth product. We know this to be 
the Gsus%iul. In Section V-H we sought the function with 
restricted time duration. which minimized the main-lobe 
width for P given sidelobe level. We now consider a simllar 
problem. For a restricted energy, determine the function of 
restricted time duration T which mnximhcs the energy in the 
band of frequentica W. Slepian, PoUak, and Landau ( I9 1, 
1201 have determined this function as a family parametetied 
Ova the time-bandwidth product. the prolate-spheroidal wave 
functions of order zem. Kaiser hu discovered a rimplc ap- 
Proximatian to these functions in terms of the zero-order 
modified Besel function of the fti kind. Tbe Kaise-Bessel 
window is defined by 

Jo 
w(n)=- 

where 

The p-eta 110 is half of the time-bandwidth product. The 
transform is approximately that of 

This window h presented in Fii. SO-53 for nl”s of acq”d 
to 2.0. 2.5. 3.0, and 3.5, -tidy. Note the trade off 
between sidelobe level and main&be width. 

1. Borcilon-Temes Window 1211 

We now examine the lut criterion of 0ptimaLity for a win- 
dow. We have already described the Slcpian, Poti, and 
Landau criterioo. Subject to the wnstnints of tixcd en- 
and fued duration. determine the function which maxim&a 
the energy in the band of ffequcntics W. A related criterion, 
subject to the constraints of fued arca md fried duration. U 
to determine the function which lllsmds the tllerp? (nr 
the we&b&d energy) outside the band of frequeocies W ‘~#ii: 
is a reasonable criterion since we rxa@ze that the tnnsfon” 
of a good window should minimix the en- it gathm fmm 
frequencies removed from its cater frcqwy. Till now. we 
have bee” responding t” thi, .g,al by m.ximiz@ the onlcca- 
tration of the transform at its main Lobe. 

A closed-form solution of the unwei&tcd minimum-encrgr 
criterion has not been found. A roluti”a dcfmed as an cxpm- 
sion of prolate~pheroidal ware functions dots exist sod ii is 
of the form shown in 
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Here the X,, is the e&envplue corresponding to the associated 
prolate-spheroidal wave function I $tLln(x. y) I. and the na is 
the selected half time-bandwidth product. The summation 
converges quite rapidly, and is often approximated by the irst 
term or by the tint two terms. The fust term happens to be 
the solution al the Slepian. Poll&, and Landau problem. 
which we have already examined as the Kaiser-Bessel window. 

A closed-form solution of a weighted minimum-energy 
criterion. presented in the following equation has been found 
by Barcilon and Tema: 

Minimtie IHWl’&dw. (481 

Thiscritetion isone which is a compromise between the Dolph- 
Chebyshev and the Kaiser-Bessel window criteria. 

L.ike the DolphXbcbysbw window, the Fourier truuform is 
more easily defmed, and the window timejlmpla an ob- 
tamed by an inverse DFT and an appropriate scale factor. Tbc 
transform samples are defmed by 

A cos Iv(k)1 + B 
W)=(-IP 

y? sin [y(L)] 1 
[C+ABI [p]’ + LO] 

where 

A =sinh(O=m 

B=cosh(C)= IO’ 

(49) 



C=cosh-‘(IOU) 1 
@= cash ;C [ 1 

y(k)= N cos 

(gee alsO (45).) this window is presented in Figs. 54-56 fat 
vduer of a equal to 3.0, 3.5, and 4.0. respectively. The “ain 
lobe stmct”re is practically indistinguishable fro” the Kaiser- 
&s] m&+&e. me fuures of merit listed on Table 1 suggest 
eat f,,r the same sidelobe level, this window does indeed 
“tide between the Kaiser-Bessel and the Dolph-Cbeby*ev 
h&w, it is interesting to examine Fig. 12 and note where 
w ,+jndow is located with respect to the Kaiser-Bessel 
edow; rt&ing similarity in PerfOtmanCe! 

we now describe a simple experiment which dIa”atic~Y 
demo,,strstes the influence a window exerts on the detection 
of a we& spectrll line in the presence of a strong nearby line. 
,f two ~pccval ,i,,es reside in Dm bins, the rectangle window 
avows each to be identified with no interaction. ,To demon- 
strate this, consider the signal composed of two frequencieS 
,O fi,N and 16 f,/N (corresponding to the tenth and the 
dteenth DFT bins) and of amplitudes 1.0 and 0.01 (40.0 dB 
scpustion), respectively. The power Epectru” Of this Sigllal 
obtained by a DFT is shown in Fig. 57 as a lincar interpola- 
tion between the DFT wtput points. 

We now modify the signal slightly so that the larger signal 
resides midway between two DFT bins; in particulnr, at 10.5 
f,/h'. The smaller signal still resides in the sixteenth bin. The 
power spectrum of this signal is show in Fig. 58. We note 
that the sidelobe structure of the larger signal has completely 

-amped the main lobe of the smaller sigznl In fact, we know 
(see Fig. 13) that the sidelobe amplitude of the rectangle win- 
do’w af 5.5 bins from the center is only 25 dB down from the 
peak. Thus the second signal (5.5 bins away) could not be 
detected because it was “ore than 26 dB down. and hence, 
hidden by the sidelobe. (The 26 dB corns from the 25d8 
sidelobe level minus the 3.9dB processing Ions of the window 
plus 3.0 dB for a high confidence detection.) We also note 
the obvious asymmetry around the main lobe centered at 10.5 
bms. Thrs is due to the coherent addition of the sidelobe 
struucturcs of the par of kernels located at the plus and minus 
10.5 bin positions. We are obsetig the self-leakage between 
the positive and the negative frequencies. Fig. 59 is the power 
spectrum of the signal pair, “oditied so that the largwamplitude 
signal resides at the 10.25.bin position. Note the change Ln 
asymmetry of the main-lobe and thr rcdncti~!n in ills ridclobe 
level. We still can not observe the second ,.,givd 1ocatc.l a! 
bin position 16.0. 

We now apply different windows to the twxtone signal to 
demonstrate the difference in second-tone detectability. For 
SOme of the windows, the pwrer resolution OCCUIS when the 
large signal is at 10.0 bins rather than at 10.5 bins. We will 
always Present the window with the large signal at the loca- 
tion corresponding to warst-case resolution. 

The first windo* we apply is the triangle window (see Fig. 
60) The side;obzs have fak,, by a factor of two over the 
rec*=WJc wmdowr’ lobes (e.g.. the -35dB ieve, has fallen to 
-70 dBI. The ridrlabes of the larger signal have fallen to 
aPPro*lnUtelY -45 dB a( the second signal so that it LI barel) 

dc !tectable. If there were any noise in the signal. the second 
fC me would probably not have been detected. 

th 
ca 

The next windows we apply are the axa family. For 
me cosine lobe, a = I .O, shown in Fig. 6 I we observe a phase 
!ncellation in the sidelobe of the large signal located at the 
nall signal position. T&is annnot be considered a detect 
e also see the spectral leakage of the main lobe o”et tue 
equency axis. Signals below this leakage level would not be 
:tectcd. With a = 2.0 we hzve the Harming wmdow, which is 

In 
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Fit?. 63. ca f”.,K) widow. 

presented in Fig. 62. We detect the second signal and observe 
1 3.O-dB null between the two lobes. This is still a marginal 
detection. For the cos’(x) window presented in Fig. 63, we 
detect the second signal and obsme a 9.O-dB null between 
the lobes. We al.w see the improved sidelobe response. Finally 
for tbe co%‘(x) window presented in Fig. 64, we detect the 
second signal and ob~rve a 7.O-dB null between the lobes. 
Here WC witnes the reduced return for the trade between 
sidelobe level and main-lobe width. In obtaining further 
reduction in sidelobe level we have caused tbc increased mati- 

~8Obe width to encroach upon the second SignaL 

. 

I! 
i! 

1; 

mily. For 
t We next apply the Hamming window and present the result 
h.. FS 65 Here we observe the second signal some 35 dB :-e a ph== 

zated at the am. approximately 3.0 dB over the sidelobe response of 

a det-Xtl’- e be siamI. Here. too, we observe the phase cancellation the sidelobe stmcture of tJut kernel. Note the rapid rate of 

,be over the (I 

& 

the leakage between the positive and the negative fre- falloff of the sidelobe Leakage has confined the artifacts to a 

U&d not be e”CY components. Signals more than 50 dB down would small portion of the spectral line. 

iow ich 1s t be detected in the ;;resenze of the larger signal. We next apply the exact Blackman coefficients and witness 
Thp BLaclwaa window is applied next and we szn the revolts the results :;n Fig. 67. Again the second Ugnal is well defined 

2 Fig. 66. Tbe presence of the smaller amplitude kernel is with a 24-ziB null between the two kernels. The sidelobe 
now WV apparent. There ir a 17-dB null between the two str”ct”re of the larger kernel now extends over the entire 
dCnak IX: artifact at the base of the lqe-signal kernel is spectral range. This leafrage is not terribly severe as it is nearly 



P-t&70. .amptc---rila. a. 73. de I# vstt.5-Polli0 window 

to the phuc can-tion of a sidelobe in the law &‘I 
kernel. 

The result of a Riemam window is presented in FU. 72. 
Here. too, we bare no detuztion of the second s&ml. WC do 
have a muU aull due to piuse rmwlfation at the second sw 
ad. We also have a Loge ddelobe rapome. 

The ,,ext window. the de la Vail&Poussin or the rlf- 
convolved triangle. is shown io Fig 73. Tbe second n.qnnll u 
a.dy found lad the power spectrum exhibits a 16.O-dB null. 
An artifact of the window (itz lower sidelobe) shorn up. 
hoaewr, at the fiith DFT bin as a signal approximately 53.0 
dB down See Fy 29. 

The rcdt of applyins the Tukcy family of window ix 
praeoted in Fm. 74-76. In Fig. 74 (the 25percent taper) 
WC lice the hck of ,ecmd+wal detection due to the b&b side- 
lobe smxturc of the dominant rectangle window. In Fi&. 75 
(the 50perccnt taper) WC observe a lack of second-ngml 
detection. with the second s%?mal actually filling in one of the 
oulk of the furt s&ml.%’ kernel. In Fig. 76 (the 76-percent 
taper) we witness a marginal detection in the still high side- -.. . 



The B&mm construction window is applied and presented 
in Fia. 77. The second signal has been detected and :hv null 
between thr two 1&es is approximately 6.0 dB. Thk is not 
bad. but we can still do better. Note rbere the Bohman wi,~ 
dew resides m Fig. 12. 

The result of applying the Poisson-window famdy 1s pre- 
sm:ed i:. Fig.. 7.?-50~ Ti-x second :Unal is nor detccrsd f@r 
any of the selected parameter values due to the higkidrlobe 

levels of the larger signal. We anticipated tha poor perfor- 
mance in Table I by the large differmce betrem the 3.0 dB 
and the ENBW. 

The result of applying the Hanning-Poisson family of win- 
dows is presented in Figs. 81-83. Here. too. the second signal 
is either not detected in the presence of UIC hi&Jidelobe 
structure or the detection is bewildered by the utifncts. 

Tb.e Cauchy-family windows have been apphcd and tl~,i 
results are presented in Figr. 84-86. Here too we havr a Ia< k 
of satisfactory detection of the second s&nll and tkrc poor 
sidelobe mporse. Tbis was predicted by the lqc difference 
between the 3.0 dB and the cquivaknt noise bandwidths as 
listed in Table I. 

We now apply the Gausian family of windows and present 
the results in F@. 87-89. The second si.mnl L detected in aU 
three fwen. we note a we further depress the sidelobr 
strulic:,ue to enhance secondsi~a, detection, the null deepens 
to approximately 16.0 dB and then becomes poorer as the 
main-lobe width increases and starts to overlap the lobe of 
the smdler signal. 

The DolphXhebyzhtv family of windows is presented in 
Figs. 90-94. We observe strong detection of the second signal 



Note the difference in phase cancellation near the base of the 
Large s&nab Fig 93. the 7MBsidelobe window. exhibits an 
1 MB null between the two main lobes but the sidelobes have 
added constructively (along with the scalloping loss) to the 
-62.O-dB level. In Fig. 94, we see the 8WB udelobe -0oU 

lobe being sampled off of the peak and being refcrenwd as exhibited sidelobes below the 7048 level and still managed to 
MD dB. Fii. 90 and 91 dcmoostnte tic sensitivity of the bold the null between the two lobes to approximatley 18.0 
sidelobe coherent addition to main&& position. In Fig. 90 dB. 
the larger sigh is at bin L0.5; in Fig 91 it is at bin 10.0. The KG.ser-Bessel family is presented in Figs 95-98. Here. 



too. we have strong second-signal detection. Again. we see the 
effect of trading increased main-lobe width for decreased 
sldelobe level. The null between the two lobes reaches a maxi- 
mum of 22.0 dB as the sidelobe stru~~ture falls and then be- 
comes poorer with further sidelobe level improvement Note 
that this window can maintab, a 20.OdB null between the two 
Wnal lobes and sti” hold the leakage to more than 70 dB 
down over thr entire spectrum. 

Figs. 99-101 present the performance of the Barcilon- 
Te”ws window. Note the strong detection of the second s,gnal. 

There are slight sidelobe artifacts. The window can maintain 
a 20,OdB null between the two signal lobes. The performance 
of this window is slightly shy of that of the Kaiser-Bessel 
wmdow. but the two are remarkably similar. 

VII. CoNCLUsloNs 

We have examined some classic windows and some windows 
which satisfy some criteria of optimality. In particular. we 
have desctihed their effects on the problem of general har- 
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manic analysis of tones in broadband noise and of tones in 
the presence of other tones. We have observed that when the 
DFT Is used as a hvmonic energy detector, the worst case 
procesing 1os1 due to the windows sppearr to be lower 
bounded by 3.0 dB and (far good windows) upper bounded 
near 3.75 dB. This suggesta that the choice of particular 
windows has very little effect on worst case performance in 
DFl’ energy detection. We have concluded that a good perfor- 
mance indicator for the window 15 the difference between the 
equivalent noise bandwidth and the 3.048 bandwidth nor- 
malized by the 3.o-dB bandwidth. The windows which per- 
form weU (as indicated in Fig. 12) exhibit vallres for this 
ratio between 4.0 and 5.5 percent. The range of this ratio 
for the windows listed in Table I is 3.2 to 22.9 percent. 

For multiple-tone detection via the DFT, the window 
employed does have a considerable effect. Maximum dynamic 
range of multitone detection requires the transform of the 
window to exhibit a highly concentrated central lobe with 
very-low sidelobe structure. We have demonstrated that 
many classic windam satisfy this miterion with varymg 

degrees of suxess and some not at all. We have demonsr; .,,’ 
the optimal windows (Kaiser-Bessel. Dolph-Chebyshcv, aid 
Barcilon-Temes) and the Blackman-Hanis windows perform 
best in detection of nearby tones of dgnificantly differmr 
amplitudes. Also for the same dynamic range, the three opti- 
mal windows and the Blackman-Harris window are roughly 
equivalent with the Kaiser-Bessel and the Blackman-Hams. 
demonstrating minor perfornmnce advantages over the others 
We note that while the Dolphxhebyshev window appears to 
be the best window by virtue of its relative position in Fig. 12. 
the coherent addition of its constant-level sidelobes detracts 
from its perfomwtce in multi tone detection. Also the PIIIC- 
lobe st,,,ctwe of fhe Dolph-Chebyshev window rxhilvt\ 
extreme sensitivity to coefficient errors This would affect 
its performace in machines operating with fixed-point arith- 
metic. This suggests that the Kaiser-Bessel or the Blackman- 
Harris window be declared the top performer. My preference 
is the Kaiser-Bessel window. Among other reasons. the curi- 
ticienfs are easy to generate and the tradeall of sidelob? 
level as a function of time-bandtidth product is fairly ample, 
For many applications, the author would recommend thr 4~ 
sample Blackman-Harris (or the 4sample Kaiser-Brssrl) 
window. These have the distinctiw~ czf being defini+ by :+ ‘:.: 
easily generatcd coefficients and of being able to ix apl.“, li 
ar a spectral convolution after the DFT. 

We have called attention to a petistent error in the applica- 
tion of windows when performing convolution in the fre- 
quency domain. i.e., the omission of the alternating signs on 
the window sample spectrum to account for the shifted time 
O”gln. We have also identified and clarified a source of 
confusion concerning the e~ennesz of windows under the DFT. 

Finally. we comment that all of the conclusions presented 
about window performance in spectral analysis are also ap- 
plicable to shading for array processing of spatial sampled 
data, including FFT beamforming. 



HARRIS: “SE OF WINDOWS FOR HARMONlC ANA‘YSIS 

and 

Then 

*P 
f(l) = 

L 
F(w) exp (-jwr) dwl2n 

+Nl, 
Yw)= x w(nT) exp (+jwnT). 

“.-‘V,* 

F,(w) = x w(nT)jC(nT) exp (+jwnT) 
n-- 

becomes 

IS 

F,(w)= 1 F(x) exp (-jxnT)dxjZn 
n=- 

exp (+jwnT) 

/ 

l -  fW 

= F(x) x w(nT) exp I+j(w x)nTl drj2n 
-- “=a 

/ 

*a *TV,* 
= F(x) x w(nT) exp Ifj (w - x)nTl dx/2n 

_m “=-IV,* 

=I- 

.m 

F(x) W(w x)dx/2n - 

or 

F,(W) = F(W) * W(W). 

. 
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